Selected Recent Publications

2025

Durstewitz D., Averbeck B. & Koppe G.
What Neuroscience Can Teach AI About Learning in Continuously Changing Environments
preprint arXiv: https://doi.org/10.48550/arXiv.2507.02103
Nature Machine Intelligence, accepted for publication

Emonds N., Herberg E., Gerchen M. F., Pritsch M., Rocha J., Zamoscik V., Kirsch P., Herzog R. & Koppe G.
A Data-Driven Closed-Loop Control Approach to Drive Neural State Transitions for Mechanistic Insight
preprint bioRxiv: https://doi.org/10.1101/2025.07.21.665992

Fechtelpeter J., Rauschenberg C., Goetzl C., Hiller S., Emonds N. , Krumm S., ReinighausϮ U., DurstewitzϮ D. & KoppeϮ G.
Computational network models for forecasting and control of mental health trajectories in digital applications
preprint medRxiv: https://doi.org/10.1101/2025.07.03.25330825

Brenner* M., Weber* E., KoppeϮ G. & DurstewitzϮ D.
Learning interpretable hierarchical dynamical systems models from time series data
The Thirteenth International Conference on Learning Representations, 2025

2024

Volkmann E., Braendle A., Durstewitz D. & Koppe G.
A scalable generative model for dynamical system reconstruction from neuroimaging data
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024

Brenner M., Guennouni I., Durstewitz D., Schmidt S. N. L., Lis S., Kirsch P. & Koppe G.
Digital twins of human social interactions reveal behavioral strategies in exchange games
2024, September 20, https://doi.org/10.31234/osf.io/m6pnq

Brenner M., Hess F., Koppe G., Durstewitz D.
Integrating Multimodal Data for Joint Generative Modeling of Complex Dynamics
Proceedings of the 41st International Conference on Machine Learning, PMLR 235:4482-4516, 2024

Fechtelpeter J., Rauschenberg C., Jamalabadi H., Boecking B., van Amelsvoort T., Reininghaus U., Durstewitz D., Koppe G.
A control theoretic approach to evaluate and inform ecological momentary interventions
International Journal of Methods in Psychiatric Research, 2024, e70001, https://doi.org/10.1002/mpr.70001